Comparative Study of MLP and RBF Neural Networks for Estimation of Suspended Sediments in Pari River, Perak

نویسنده

  • M. R. Mustafa
چکیده

Estimation of suspended sediments in rivers using soft computing techniques has been extensively performed around the world since 1990’s. However, accuracy in the results was always found to be highly desired and a profound crucial task. This study presents a thorough comparison between the performances of best basis function of Radial Basis Functions (RBF) and the best training algorithm in Multilayer Perceptron (MLP) neural networks for prediction of suspended sediments in Pari River, Perak, Malaysia. Time series data of water discharge and suspended sediments was used to develop MLP and RBF models. A comparison between six basis functions was performed to identify the most appropriate and best basis function for the selected time series of the river’s data. The performance of the models was compared using several statistical measures including coefficient of determination, coefficient of efficiency and mean absolute error. The performance of the best RBF function was compared with the previously identified best training algorithm of MLP neural networks. The results showed that comparison of various basis functions is always advantageous to achieve the most appropriate basis function for the accurate prediction of the time series data. The results also showed that the performances of both particular RBF and MLP models were close to each other and capable to capture the exact pattern of the sediment data in the river. However, the RBF model showed some inconsistency while predicting the time series data. Furthermore, RBF modeling required more investigation to choose appropriate value for the predefined parameters as compared to

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Two Methods of Artificial Neural Network MLP, RBF for Estimation of Wind of Sediments (Case Study: Korsya of Darab Plain)

The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...

متن کامل

Multi-layer perceptrons with Levenberg- Marquardt training algorithm for suspended sediment concentration prediction and estimation

The prediction and estimation of suspended sediment concentration are investigated by using multi-layer perceptrons (MLP). The fastest MLP training algorithm, that is the Levenberg-Marquardt algorithm, is used for optimization of the network weights for data from two stations on the Tongue River in Montana, USA. The first part of the study deals with prediction and estimation of upstream and do...

متن کامل

Applying Artificial Neural Network Algorithms to Estimate Suspended Sediment Load (Case Study: Kasilian Catchment, Iran)

Estimate of sediment load is required in a wide spectrum of water resources engineering problems. The nonlinear nature of suspended sediment load series necessitates the utilization of nonlinear methods to simulate the suspended sediment load. In this study Artificial Neural Networks (ANNs) are employed to estimate daily suspended sediment load. Two different ANN algorithms, Multi Layer Perce...

متن کامل

Estimating river suspended sediment yield using MLP neural network in arid and semi-arid basins Case study: Bar River, Neyshaboor, Iran

Abstract Erosion and sedimentation are the most complicated problems in hydrodynamic which are very important in water-related projects of arid and semi-arid basins. For this reason, the presence of suitable methods for good estimation of suspended sediment load of rivers is very valuable. Solving hydrodynamic equations related to these phenomenons and access to a mathematical-conceptual mode...

متن کامل

A Comparison of Artificial Neural Networks for Prediction of Suspended Sediment Discharge in River- A Case Study in Malaysia

Prediction of highly non linear behavior of suspended sediment flow in rivers has prime importance in the field of water resources engineering. In this study the predictive performance of two Artificial Neural Networks (ANNs) namely, the Radial Basis Function (RBF) Network and the Multi Layer Feed Forward (MLFF) Network have been compared. Time series data of daily suspended sediment discharge ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014